Computer-aided detection of clustered microcalcifications in digital breast tomosynthesis: a 3D approach.

نویسندگان

  • Berkman Sahiner
  • Heang-Ping Chan
  • Lubomir M Hadjiiski
  • Mark A Helvie
  • Jun Wei
  • Chuan Zhou
  • Yao Lu
چکیده

PURPOSE To design a computer-aided detection (CADe) system for clustered microcalcifications in reconstructed digital breast tomosynthesis (DBT) volumes and to perform a preliminary evaluation of the CADe system. METHODS IRB approval and informed consent were obtained in this study. A data set of two-view DBT of 72 breasts containing microcalcification clusters was collected from 72 subjects who were scheduled to undergo breast biopsy. Based on tissue sampling results, 17 cases had breast cancer and 55 were benign. A separate data set of two-view DBT of 38 breasts free of clustered microcalcifications from 38 subjects was collected to independently estimate the number of false-positives (FPs) generated by the CADe system. A radiologist experienced in breast imaging marked the biopsied cluster of microcalcifications with a 3D bounding box using all available clinical and imaging information. A CADe system was designed to detect microcalcification clusters in the reconstructed volume. The system consisted of prescreening, clustering, and false-positive reduction stages. In the prescreening stage, the conspicuity of microcalcification-like objects was increased by an enhancement-modulated 3D calcification response function. An iterative thresholding and 3D object growing method was used to detect cluster seed objects, which were used as potential centers of microcalcification clusters. In the cluster detection stage, microcalcification candidates were identified using a second iterative thresholding procedure, which was applied to the signal-to-noise ratio (SNR) enhanced image voxels with a positive calcification response. Starting with each cluster seed object as the initial cluster center, a dynamic clustering algorithm formed a cluster candidate by including microcalcification candidates within a 3D neighborhood of the cluster seed object that satisfied the clustering criteria. The number, size, and SNR of the microcalcifications in a cluster candidate and the cluster shape were used to reduce the number of FPs. RESULTS The prescreening stage detected a cluster seed object in 94% of the biopsied microcalcification clusters at a threshold of 100 cluster seed objects per DBT volume. After clustering, the detection sensitivity was 90% at 15 marks per DBT volume. After FP reduction, at 85% sensitivity, the average number of FPs estimated using the data set containing microcalcification clusters was 3.8 per DBT volume, and that estimated using the data set free of microcalcification clusters was 3.4. The detection performance for malignant microcalcification clusters was superior to that for benign clusters. CONCLUSIONS Our study indicates the feasibility of the 3D approach to the detection of clustered microcalcifications in DBT and that the newly designed enhancement-modulated 3D calcification response function is promising for prescreening. Further work is needed to assess the generalizability of our approach and to improve its performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of computer-aided detection techniques and signal characteristics for clustered microcalcifications on digital mammography and digital breast tomosynthesis.

With IRB approval, digital breast tomosynthesis (DBT) images of human subjects were collected using a GE GEN2 DBT prototype system. Corresponding digital mammograms (DMs) of the same subjects were collected retrospectively from patient files. The data set contained a total of 237 views of DBT and equal number of DM views from 120 human subjects, each included 163 views with microcalcification c...

متن کامل

Reconstruction-Independent 3D CAD for Calcification Detection in Digital Breast Tomosynthesis Using Fuzzy Particles

In this paper we present a novel approach for microcalcification detection in Digital Breast Tomosynthesis (DBT) datasets. A reconstructionindependent approach, working directly on the projected views, is proposed. Wavelet filter responses on the projections are thresholded and combined to obtain candidate microcalcifications. For each candidate, we create a fuzzy contour through a multi-level ...

متن کامل

Three-Dimensional Computer-Aided Detection of Microcalcification Clusters in Digital Breast Tomosynthesis

We propose computer-aided detection (CADe) algorithm for microcalcification (MC) clusters in reconstructed digital breast tomosynthesis (DBT) images. The algorithm consists of prescreening, MC detection, clustering, and false-positive (FP) reduction steps. The DBT images containing the MC-like objects were enhanced by a multiscale Hessian-based three-dimensional (3D) objectness response functio...

متن کامل

A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan mCaD

Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan μCaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction,...

متن کامل

A Computer Aided Detection (CAD) System for Microcalcifications in Mammograms - MammoScan μCaD

Clusters of microcalcifications in mammograms are an important sign of breast cancer. This paper presents a complete Computer Aided Detection (CAD) scheme for automatic detection of clustered microcalcifications in digital mammograms. The proposed system, MammoScan μCaD, consists of three main steps. Firstly all potential microcalcifications are detected using a a method for feature extraction,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 39 1  شماره 

صفحات  -

تاریخ انتشار 2012